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Abstract: Essential amino acids, now called indispensable amino acids
(lAA) are not synthesized by the body, and have therefore to be supplied
from an exogenous source. IAA requirements as set out in 1985 by the
FAOIWHO/UNU have been challenged by the data derived from the
application of obligatory nitrogen loss measurement technique and the
stable isotope tracer amino acid technique. These measurements suggest
that lAA requirement in adults may be between two to three times the
requirements set out in the 1985 FAQIWHOIUNU recommendations.
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INTRODUCTION

Man and other mammals are dependant
on at least 8 amino acids that have to be
supplied from an exogenous source. These
amino acids, which are not synthesised by
the body, were initially called 'essential', as
contrasted to those 'non-essential' amino
acids which were synthesised in the body.
More recently, the terms "indispensable' and
"dispensable" have been used more often,
instead of essential and non-essential
respectively, and they are now in general
acceptance (1). Estimates of the dietary
intakes necessary to meet the requirements
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for these indispensable amino acids are of
crucial significance in formulating sound
nutrition and health policies, as well as in
assessing and maintaining the health and
well being in individuals.

The current international estimates of
indispensable amino acid (IAA)
requirements in human at various ages are
set out in the 1985 report of the Joint FAO/
WHO/UNU Expert Consultation on energy
and protein requirements (2). These
estimates, for pre-school and school-age
children and adults, are summarised in
Table 1. Recently however, there has been



6 Kurpad and Young

a change in the recommended intake of
essential amino acids for adults, as set out
by the 1991 WHO/FAO Expert Consultation
(3). The tentative new requirements have
resulted from a paradigm shift in
the approach to measuring the IAA
requirements of adults. The need for this
new paradigm arose from the inadequacies
of the old method of measuring IAA
requirement from measurements of nitrogen
balance. In tha case of adult IAA
requirments, th 'y were so low that it would
have been possible to achieve adequate
intakes of IAA's on an exclusively cereal
diet. Indeed, protein quality in this case
would be of little practical consequence for
adult human protein nutrition.

Two new methods of estimating IAA
requirement have been proposed; the first
from obligatory nitrogen loss measurements,
and, the second, from the measurement of
daily amino acid balance, by the use of a
stable isotope tracer amino acid technique.
These measurements have led to the
suggestion that the IAA requirements in
adults may be between two to three times
the requirements set out in the 1985 WHO/
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F AO/UNU recommendations (2). The
arguments for these measurements,
presented by Young and co-workers in their
publications, were sufficiently compelling to
persuade an Expert consultation of the FAO/
WHO in 1991 to recommend, as an interim
measure, that the pattern of requirements
in adults be set at that required by the pre­
school child (3). This pattern was, in fact,
similar to, and slightly higher than the
pattern suggested by Young (4) and which
is now known as the "MIT pattern of IAA
requirement" (Table II).

2. The problem of accepting the 1985 WHO/FAO;

UNU estimates in adults.

The 1985 FAO/WHO/UNU Expert
Committee (2) recommendations on IAA
requirements w re based on the early
studi s of Rose and co-workers in men (5)
and on s parate but similar studies by
various investigators in women (summarised
in 6). he e estimates (5) were based on
nitrogen balance studies, which had several
drawbacks. The drawbacks included (a) an
overestimation of N balance and, hence, an
underestimation of requirements due to high

TABLE I : 1985 WHO/FAO/UNU Recommendations for IAA Intake.

Recommendations (mg I kg / dfLy)

Amino acid

1501 ucine

Leucine

Lysine

Methionine+cysti ne

Phenylalanine+tyrosine

Threonine

Tryptophan

Valine

Total

Infants
(3-4 month)

70
161

103
58

125
87

17

93

714

Pre-school
(2 years)

31
73
64

27

69

37
12.5
38

352

Adult

10
14

12
13

14

7

3.5

3.5

84
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TABLE II A Comparison of the IAA requirements by different paradigms.

Requirement (mg/kg/day)
Amino acid

FAD / WHO / UNU OAAL

1985 (1) (2)

Isoleucine 10 23

Leucine 14 40

Lysine 12 30

Methionine+cys tine 13 13

Phenylalanine+tyrosi ne 14 39

Threonine 7 15

Tryptophan 3.5 6

Valine 3.5 20

Total 84 186

New "MIT"

Pattern (3)

23

39

30

15

39

15

6

20

187

FAP/WHO

1991 (4)

31

73

64

27

69

37

12.5

38

352

(1) From Ref. 2; (2) From Ref. 4; (3) From Ref. 20; (4) From Ref. 3.

dietary energy intakes, (b) incomplete
measurement of N losses via routes other
than faeces and urine, and (cl a confounded
experimental design (7,8,9). The important
feature of the Rose nitrogen balance studies
was that the energy intakes given to the
subjects were high, potentially leading to
an enhanced degree of amino acid economy,
and therefore, to apparently lower amino
acid requirements. These problems with the
interpretation of the nitrogen balance
studies, have been reviewed extensively (la,
11, 12), and it is now clear that the results
of N balance studies should not be used to
establish the requirement for indispensable
amino acids to maintain protein nutritional
status in adults, in the long term.

There are other reasons for questioning
the 1985 FAO/WHO/UNU adult IAA
requirements. Table I, depicting these
requirements, clearly shows that there is a
sharp drop in the IAA requirement of adults,
when compared to the pre school child. This
difference is based on assumption of the
relative importance of "growth" and

"maintenance" requirements in the human
body, i.e., that the requirement of the
human pre-school child is skewed towards
growth while the requirement in the adult
IS skewed towards maintenance.

The assumption of a difference between
the partitioning of the requirements of a
pre-school child and that of an adult may
be flawed. The growth requirements for
human is about 50% at 6 months of age,
and this growth maintenance declines to
abJut 20% in the 2 year old child, and 15%
or less in the 4-5 year old child (2, 13, 14).

This is in contrast to the pig, (which has
been studied extensively, and has been used
to extrapolate to humans (15», where, 90%
of the requirements in the young pig are
for growth (recalculated in 13). A similar
picture is seen in the weanling rat (16), and
in both these mammals, differs profoundly
from human growth, where a large
proportion of the amino acid requirements
in the young, are for maintenance. In the
pig therefore, one would expect a large
difference between adult pig and piglet
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requirements, while the same reasoning
would not necessarily be true for man.
Further, while differences between the
growth and maintenance patterns of IAA
requirement, have been shown to be
different in pigs (16), the comparison
between the amino acid requirements, in
adult animals (maintenance), show no great
difference from the composition of mixed
body proteins in both rats and pigs (17, 18).

One measure of the maintenance
requirement, is the measurement of the N
required to sustain the existing fat free
mass. This minimal N requirement can be
derived from the basal N loss, which is a
function of the body weight 075 (18). If the
composition of this N (protein) loss could be
determined, then the recommended intakes
of IAA in adults could be predicted. While
the maintenance pattern of IAA
requirements has been studied in pigs (17­

19) and shown to be high in dispensable
amino acids, Young and EI-Khoury have
reviewed this issue and conclude that, in
adult pigs and rats, there is not much
difference between the maintenance pattern
of IAA requirement and body protein
composition (13). Hence, there is a case here
for relating the basal N loss in humans to
the amino acid composition of body protein.

These various observations support the
development of a new paradigm of
measuring amino acid requirements, based
either on obligatory nitrogen loss and the
body protein composition, or on the concept
of body amino acid balance. These new
paradigms for IAA requirements will be
explored briefly in this review, which will
finally concern itself with the estimates for
the IAA requirements in adults, with
specific reference to lysine.
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3. New approaches to developing measures
of indispensable amino acid requirements in

adults.

3.1: The obligatory Amino acid loss (OAAL)
method:

One of the paradigms for assessing IAA
requirements has been put forth by Young
et al (4) based on estimates of the intakes
of amino acids necessary to balance the
minimum obligatory losses of amino acids
as predicted from the composition of mixed
body proteins. This pattern was based on
the daily obligatory nitrogen loss (ONL),
with the assumptions that a) the ONL was
54 mg/kg/day in the adult, b) that the
oxidation pattern of amino acids was in
proportion to the pattern of amino acids in
a reference body protein, and c) that the
efficiency of absorption of the IAA (at
requirement level), in humans, was about
70% (13). Clearly, this method, if anything,
will underestimate the true requirement,
since the OAAL is derived from the ONL,
disregarding the small losses of amino acid
that could occur in the urine or via the
intestine.

Based on these estimates of OAAL, as
well as 13C-tracer studies (below), new
revised values for the amino acid
requirements of adults were proposed by
Young, and these are presented in Table II,
expressed in terms of mg amino acid
required/kg/day. As can be seen from the
data presented in this table, the proposed
new requirement pattern is fundamentally
quite different from the adult amino acid
requirement pattern proposed by FAO/WHO/
UNU (1985), and is similar to that for the
pre-school child (see Table I).
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3.2: The tracer balance technique:

The definition (20) of the requirement
for an indispensable amino acid in healthy
individuals, is as follows: "The requirement
for an amino acid is that minimal intake
level. which represents a single point on a
dose-response curve, when applied to a
well-characterised population group can,
with some reliability, be predicted to achieve
a criterion of adequacy (e.g. growth
performance; target composition of body
weight gain; body amino acid balance;
measure of organ (liver, muscle) and/or
system (immune/defence, nervous), or
function."

With this definition in mind, Young and
co-workers, have developed a second
paradigm of measuring IAA requirement
based on a stable isotope tracer technique
(see below) to measure body amino acid
balance as the criterion of adequacy. This
technique is based on the measurement of
the irreversible oxidation of tracer labelled
test amino acids (21-27), and involves
correlating the measured oxidation rate with
controlled diet studies at different levels of
intake of the test amino acid. The minimum
intake at which the estimate of daily balance
was obtained (intake-oxidation), was taken
to be the requirement level. The procedure
involves giving subjects, over a run-in
period varying from 6 to 21 days, diets based
on amino acid mixtures that supply limiting
to generous levels of the amino acid being
tested, and to measure the test amino acid
balance at each level of test amino acid
intake. This balance could be measured by
the intravenous infusion (or oral
administration) of a stable isotope (13C)
labelled amino acid, such that the flux and
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the irreversible oxidation of the test amino
acid could be measured. The measurement
of this irreversible oxidation, is based on
the highly accurate quantification of the
respiratory loss of oxidised tracer as carbon
dioxide (by indirect calorimetry and isotope
ratio mass spectrometry), as well as the
measurement of the isotopic enrichment (by
gas chromatography-mass spectrometry) of
the precursor pool of the amino acid in the
body. With the fulfilment of these
conditions, the studies of Young and co­
workers have provided a large body of data
over the last decade, that consistently
support and validate their original
hypothesis (4) that the FAO/WHO/UNU
(2) recommendations are inadequate.
Measurements of oxidation performed
over selected hours of feeding and fasting,
appeared to confirm the general
applicability of the proposed requirements
(21-27) and a comparison of these estimates
is presented in Table II. Except for the
sulphur containing amino acid requirement,
these 13C-derived estimates are far higher
than the 1985 WHO/FAO/UNU values that
are shown for adults in Table 1. For
pragmatic reasons, in these studies, the
body 'test' amino acid balance was used as
the criterion of requirement, rather than
measures of organ or system function, which
have not been sufficiently explored to permit
their use for the purpose of estimating
requirements for specific indispensable

.amino acids.

There have been both technical and
biological arguments against the immediate,
world wide acceptance of the tentative new
MIT pattern of amino acid requirement,
based on the tracer technique, which thus
far, has also validated the original OAAL
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An analysis of the series of 24 hour
tracer experiments with 13C leucine has been
carried out both at MIT as well as at
Bangalore (29, 30, 32), and has confirmed
that the daily leucine oxidation rate is
approximately the same as that derived from
shorter term studies. It is clear that the
chosen hours of measurement, for
extrapolation to a 24 hours pattern, were
fortuitous for the short term experiments.
However, subsequent studies with aromatic
amino acids like 13C-phenylalanine and 13C_
tyrosine (31) underscore the desirability of
continuing use of the 24h isotope tracer
protocol, despite its technically and
experimentally demanding nature.

temporal changes in the whole body rate of
leucine oxidation, particularly with
reference to meal intake and level of amino
acid feeding. A similar pattern in the rate
of leucine oxidation has also been observed
in our Indian subjects (32, Fig. 1). An
extrapolation of selected portion of this
diurnal pattern, to a whole day, could
therefore result in significant error.

A second major argument, of a biological
nature, against the acceptance of the tracer
technique estimates being accepted world­
wide, is that there may be metabolic
adaptations, including sparing effects of
dietary non essential nitrogen and urea
nitrogen recycling through the gut and
metabolic synthesis of indispensable amino
acids for inclusion in host metabolism,
particularly in populations with chronically
low IAA intake (33).

There is little data that can be used to
predict whether the indispensable amino
acid needs are similar or different among
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Fig. 1.: Leucine oxidation measured for each 30-min
interval throughout a 24-h tracer infusion with
[l- l3 CJ leucine. (A) Lysine intake of 12 mg/kg/
d. (B) Lysine intake of 28 mg/kg/d. The time on
the x-axis refers to time in minutes of the
experiment. Feeding began at 0600 (720 min)
as hourly meals and ended (last meal) at 1500
(1260 min), to provide 40 mg (appro>;.) dietary
leucine/kg/d. Data are for seven subjects, each
studied at both lysine intakes. Values plotted
are mean ±1 SD.

(Reprinted with permission from Am. J. Clin.
Nutr., Ref. 32)

paradigm of measuring amino acid
requirements. On the technical side, while
there is little doubt that the Rose estimates
are too low, it has been suggested that
results from earlier tracer studies carried
out over a few hours of fasting and feeding
cannot be easily extrapolated to a 24 hour
data base and, therefore, a daily
requirement value (28). There are diurnal
variations in the rate of amino acid
oxidation. Studies at MIT on Western
subjects (29-31), with the 24 hour tracer
technique in adults, have clearly defined the

"0-,-------------------~
18

"'" 16
.~ I~

;:; 12

"'. 10
eJJ

"'" 8C 6

~ 4

2o.L- -----J



Indian J Physial Pharmacal 1999; 43(1)

various population groups. One recent study
by us in well nourished Indian adult males
(32), using the tracer technique (indicator
amino acid technique, see below), suggests
that, the requirements for lysine are similar
to those in Western subjects. Another
approach to assessing the similarity (or
dissimilarity) of IAA requirements among
different populations, is to compare ONL
losses. Studies of obligatory nitrogen losses
in US (34, 35, 36), Chinese (37), Indian (38),

Nigerian (39, 40) and Japanese men (41)

reveal that they are remarkably uniform
(42). By implication, the dietary
requirements for indispensable amino acids,
according to the OAAL model, would be
similar (13), unless there is evidence that
the efficiency of specific amino acid
retention differed among apparently similar
subjects in the population groups.

It is still possible that in undernourished
populations with low intakes, there is an
"adaptation" of requirements. Studies by
Nicol & Philips (39, 43) suggesting that
Nigerian men of low income are adapted to
low-protein diets and utilise dietary protein
more efficiently than, for example, US
students (35) are not appropriate to answer
this question. This is because the N balance
results in the Nigerian subjects studies were
indicative that they were depleted and that
they were undergoing a body protein
repletion response to the "good" diet given
during the course of the experiments. Later
studies in young Nigerian adult males (44)
indicate that at maintenance nitrogen
intakes, the efficiency of dietary protein
utilisation is essentially the same as that
for Caucasian and Oriental subjects. It is
also important in these studies to ensure
that there is no positive energy balance, as
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this could also 'spare' protein oxidation.
Clearly, the need of the moment is for well­
conducted 24 hour tracer balance studies,
In well-nourished populations, from
different ethnic backgrounds, at an
adequate but not excess intake of energy,
protein and indispensable amino acids.

There have also been suggestions that
an economy of body nitrogen metabolism,
and, hence IAA's may occur through urea
recycling in the gut (45), wherein, the
nitrogen in urea in the gut, is cycled into
microbial amino acid N, and this N is
subsequently absorbed into the body amino
acid pool. There is no doubt that urea
production exceeds urea excretion (46), and
that urea recycling does occur (47). This
degradation of urea, occurs in the gut, and
can account for upto 40% of the urea
production in subjects with a normal protein
intake (46-48). In addition, there is evidence
that dietary urea nitrogen can be used for
amino nitrogen synthesis in breast-fed and
formula-fed infants (49, 50). Further, 15N
urea administration to adults resulted in
the detection of 15N labelled dispensable
amino acids in the plasma (51). In this
study, 15N was also detected in lysine, and
this may have resulted from degradation of
microbial protein. Given evidence that the
urea utilisation process is variable,
inversely dependent on the IAA intake, and
growth of the animal (52), and that
quantification of this process is difficult, it
is possible that in the well nourished,
adequately fed individual, this process may
not be of major quantitative importance In

the IAA economy of the whole body.

The leucine tracer balance approach has
been extensively studied, and there is a
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general acceptance of the technicalities of
this method (33), as well as of the
requirement for leucine determined by this
paradigm. If it is assumed, as has been
argued 0), that the maintenance
requirement of IAA closely resembles that
of the tissue composition of IAA's, and if
the requirement for leucine is indeed higher
as revealed by the tracer technique, then
the requirement for the other indispensable
amino acids would probably also follow this
pattern (33).

3.3: The Indicator Amino acid Technique:

The methods detailed above examine
irreversible oxidation of the test amino acid
and correlate this with the intake of the
same amino acid. This technique has been
validated for leucine (29, 30) and
investigations with phenylalanine, tyrosine
(31) and lysine (53) that are underway at
MIT further indicate that the technique can
be applied to these amino acids. One of the
objections of the "test" tracer approach,
involving different levels of feeding of the
test amino acid, which is also used as the
labelled tracer, is that it would lead to
changes in the flux of the test amino acid,
and since the oxidation of the amino acid
would be a percentage of the flux through
the cell, that these changes in flux would
inevitably change or complicate evaluation
of the oxidation rate as determined by this
model (54).

Recently, another technique has been
used to assess the "inflection point' in the
relationship between intake of one test
amino acid and the oxidation of another
indispensable amino acid (54). This method
was proposed originally by Kim et al (55)
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and later by Ball et al (56) for studies of
the amino acid requirements of pigs. This
technique has been extended by Zello and
others (57, 58) to studies of amino acid
requirements in adult human subjects. In
this technique, dietary intakes of the test
amino acid are varied, but the irreversible
oxidation and balance, of another
indispensable amino acid (indicator amino
acid) is measured. A relationship between
the two is expected, because, at low intakes
of the test (limiting) amino acid, protein
synthesis will be reduced, and so, the
oxidation of other (non limiting) amino acids
will be increased. Therefore, as the dietary
intake of the test amino acid increases and
reaches the requirement level, the oxidation
of the indicator amino acid decreases and
reaches an inflection in the line of "protein
or amino acid" oxidation vs. amino acid
intake relationship (Fig. 2). Alternatively,
the status of body balance of the indicator
amino acid (achievement of 'zero' balance)
can be used to identify the requirement level
of feeding of the test amino acid. It has been
suggested that the indicator amino acid
technique may have an advantage over the

Intlic~tor Amino Acid

.. ·Test Amino Acid

O,id~tion

Le>el

1Requirement leHl

Dietary lnt~ke"tlfTest Amino Acid

Fig. 2: Effect of dietary intake of test amino acid on
its oxidation level and that of the indicator
amino acid in relation to the requirement level
of the test amino acid.
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direct (test) amino acid oxidation method
in that there may be changes in the free
pool size of the test amino acid, as its level
of intake is altered (54). This would be
particularly a difficult problem if the
intercellular enrichment of the tracer varied
independently from the tracer enrichment
in the plasma compartment. Since the
indicator amino acid (leucine) intake is not
varied, the major changes in the enrichment
of the free pool of leucine or in its flux
would not be expected, leading to reliable
oxidation estimates of the indicator amino
acid, and therefore, accurate breakpoint
estimation.

We have recently carried out studies on
the requirement of lysine in adult, well
nourished Indian males, in Bangalore, using
the indicator amino acid technique. In this
study, a group of subjects was fed a diet
containing one of two levels of lysine.
Therefore each of the subjects was studied
twice, with a feeding period of 7 days on
each occasion. The levels of lysine in the
diet were fixed at 12 mglkg/day, and at 28
mg/kg/d ay. These levels corresponded to the
1985 FAO/WHO/UNU level (2) and the
new MIT level (4) of requirement,
respectively. The habitual intake of lysine
in these subjects was between 40 and 60
mglkg/day.

After completing each of the 7 day
feeding periods, a 24 hour tracer balance
study was performed, using leucine as the
indicator amino acid. Twenty four hour
leucine balances were estimated, and it was
found that there was a significant negative
leucine balance when the subjects were on
the 12 mglkg/day lysine intake diet. The
balance, while on the 28 mglkg/day diet was
not significantly different from zero. It
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seems therefore, that the leucine oxidation
measurement is serving as an "indicator" of
the status of dietary lysine adequacy. This
suggests that the requirements for lysine
are close to the 28 mglkg/day diet, and that
the 1985 FAOIWHO/UNU requirements are
far too low to maintain a neutral amino acid
balance. Therefore, this is the first evidence
that the IAA requirements in man may be
relatively uniform in well-nourished
populations across the world. Further
studies are underway in Bangalore to
confirm this finding, and to extend this
paradigm to measure the requirements of
other IAA's.

3.4: Technical issues with the Tracer
Technique:

The stable isotope tracer technique is a
demanding method, and attention has to be
paid to several issues, in order to avoid
serious errors. The diet (particularly the
carbohydrate part) eaten by the subjects can
be a potential source of error, as the l3C

content of plants is variable. If the 13C

content of these plants is high, then it's
oxidation during a tracer study with a 13C
labelled amino acid, will contribute variably
to the breath 1.1C0

2
enrichment. In general,

foods with a low 13C content should be fed
during the feeding period, and a correction
made, for the contribution of this diet to
the breath 13C0

2
enrichment. Such an error,

if present, would over-estimate amino acid
oxidation and requirement.

Another potential source of error is the
sequestration of the CO

2
produced from

oxidation in the body, such that it is not
completely recovered in the breath. The
reason for the incomplete recovery of
13C0

2
are well known, and include the



14 Kurpad and Yaung

equilibration and entry of the label into
slowly turning over pools (59). However, to
this may be added potential methodological
issues, such as the contribution of dietary
IJC to the enrichment of breath IJCO

Z
and

the preparation of the isotope solution.
Correction factors have to be used in order
to accurately predict the actual IJCO

Z

production, as the measured value in the
breath may be underestimated by upto 30%.
This s questration is corrected for in the
form of a 'recovery factor', which is
estimated by infusing IJC labelled
bicarbonate into the body, and measuring
its recovery as 13CO

Z
in the breath. We have

done thi , in exactly the same conditions as
the tracer amino acid experiment, and have
obtained a recovery of about 70% in the
fasted state and 75% in the fed state. These
13COz recovery studies gave values that were
slightly lower than what has been reported
previously in vVesterns studies (60, 61); this
difference was more marked in the "fed"
pattern of recovery in the present study.
The subjects of this Indian study had a
smaller body size than the subjects in the
previous Western studies (for example, 60),
but the body size of the individual has not
been shown to inf1uence the recovery of
13CO Z as similar recoveries have been
recorded in obese and non obese individuals
(62, 63), as well as in children and adults
(64, 65). The duration of the infusion is
another important variable that can
influence recovery, as longer duration of
infusion gives more time for label to cycle
through the slowly turning over pools.
However, in the Indian study, which
followed a protocol (including duration of
infusion) exactly similar to a previous
Western study carried out in MIT (29, 30),

the fed state recovery was still lower (32).
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The reason for this lower recovery could be
a relatively larger, slowly turning over pool,
such as bone (66). An under-or over­
estimation of this factor would lead to an
over-or under-estimation of IAA oxidation
and requirement.

Another issue of importance in the tracer
paradigm is the identification of, and the
accurate measurement of, the precursor
pool. This pool has been accurately
identified in the case of leucine, in the
muscle, and the enrichment of this pool is
accurat ly repn'sonted by the enrichment
of it s keto-analog in the plasma (67). The
enrichment of alpha keto iso-caproic acid
(KIC) is taken as indicative of the
enrichment of the intracellular leucine pool,
and studies by others (67-70) have
supported the use of plasma 13C-KIC
enrichment to calculate whole body protein
turnover and oxidation rates. In the case of
those substances with dominant precursor
pools in the liver, the measurement of the
enrichment of the amino acid in rapidly
turning over liver proteins in the plasma,
such as APO BIOO, will give a reasonably
accurate enrichment of the hepatic
precursor pool (71). In general, these issues
have been dealt with particularly for the
leucine tracer model, and similar progress
has been made in the case of lysine
(24, 53), aromatic amino acids (31),

threonine (23) and sulphur containing
amino acids (27).

The composition of the amino acid
mixture fed also deserves consideration. In
general, the composition of the mix should
be at the reference value, other than for
the amino acid being tested. It has been
suggested that the provision of an amino
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acid mixture, which is "ideal" or generous,
could induce the oxidative machinery of the
cell, such that a higher oxidation of the test

amino acid could occur (33). However, the
intake level of the test amino acid is the
most significant influence on the oxidation
of the test amino acid (33, 72), particularly

in the fed state, and an analysis of the
influence of other amino acids, in the fed
mixture, on the oxidation of leucine, in the
MIT series of studies, showed no such
relationship. Hence, this criticism may not
be valid. However, in general, it is
worthwhile to maintain the other amino
acids in the dietary mixture at reference
levels.

Other technical issues that could also

lead to error include the neglect of the mass
of the tracer in balance calculations, as

stable isotope labelled tracers are not mass­
less. In addition, the extrapolation of

selected time point measurements, during
the 24 hour day, to the entire period could
also lead to error, as discussed in Section
3.2. Finally, the energy balance, during a

nitrogen or tracer balance study, must be
equal to, or near zero. It is important for
activity patterns to be maintained at
habitual levels, and for the energy intake
to be estimated as a function of the BMR
and the activity levels.

4. Lysine

4.1: Daily adult requirement:

With respect to lysine, the 1985 FAa/
WHO/UNU (2) upper requirement value was

set at 12 mglkg/day for healthy adults and
a mean requirement value of 30 mg/kg/day
(20) has been proposed, based initially on
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results of short-term tracer studies.
Together with the 13C-tracer (indicator)

studies from Toronto -by Zello et al (57) and

by Duncan et al (58), which suggest a mean

lysine requirement in the region of 35-45
mglkg/day, it seems reasonable to propose,
for healthy, well nourished North American

subjects, a mean lysine requirement value
of 30 mg/kg/day.

Nitrogen balance studies give far lower
estimates than this value of 30 mglkg/day.
However, the balance data are difficult to
interpret and cannot be used readily to

assess the minimum lysine requirement of
adults. Although Bolourchi et al (73) gave
college students a diet supplying about 12
g N daily, for 50 days, from which 90-95';;(,

of the N was derived from wheat flour, and
found that N balance was positive, their
findings are not sufficiently definitive for

purposes of assessment of the minimum
requirement level of lysine. While the
lysine intake provided by the experimental
diet approximated 18 mg/kg/day, the dietary
energy intake required to prevent body

weight loss was determined to be about 54
kcal/kg/day. Such a high energy intake
limits the significance of the results
obtained from this otherwise important

s'Judy.

As detailed above, a recent study on
Indian males did show that the requirement
for lysine was close to 28 mg/kg/day. In that
study, the subjects chosen were considerably
smaller and much leaner than the MIT

subjects studied in the USA. (Subjects from
ref. 32 compared to ref. 53). Hence, it is

reasonable to draw the tentative conclusion
that if the US and Indian subjects have a
similar lysine requirement when expressed
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per unit of body weight, then the Indian
subjects would appear to need somewhat
less lysine per unit of existing lean body
mass. This does raise the question as to
whether healthy Indian subjects use lysine
somewhat more effectively to maintain
overall amino acid homeostasis than do
healthy US subjects. Equally however, one
may speculate that these Indians were using
their lysine intake more effectively, if one
assumes that they may have been in a
'repletion-type' pattern of protein synthesis,
given a 'perfect' diet. In such a
circumstance, it is possible that once these
subjects reach their ideal pattern of lean
tissue content, their lysine requirement may
actually increase from its present level.
More detailed studies, particularly linked
to measures of body composition are
required, ·over a longer term period of
feeding, in order to resolve this question.
The possibility exists that these populations
might have adapted, through metabolic
mechanisms, to more limiting intakes of
lysine in comparison with the generous
levels experienced by populations in
technically advanced nations. An
understanding of this Issue IS of
fundamental importance in human
nutrition, as was emphasised by Waterlow
in 1985 (74) who stated," I believe that the
nature and extent of metabolic adaptation
to low intakes of energy and protein is one
of the most important subjects in nutritional
science at the present time".

It is important therefore, that the
requirement for lysine in healthy adults be
more firmly established, in order to provide
a secure basis for developing food and
nutrition policies and programs in regions
where populations are at risk of dietary
protein/amino acid inadequacies.
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4.2: Implications o{ the new lysine
requirement level:

The actual requirement value for lysine
that is now established, has profound
implications with respect to an assessment
of the protein nutritional quality of diets,
especially in developing regions, where
cereal-based diets supply the major
proportion of the indispensable amino acid
intake (75, 76). Thus, it is evident that the
populations at greatest risk of a dietary
lysine inadequacy are those in developing
regions of the world (76). There is already
increasing evidence that the quality of
protein influences linear growth in children
(77, 78).

On the other hand, it is also evident that
populations consuming diets containing
largely evidently poor quality cereal protein,
have survived. Assuming that the new IAA
requirements are correct, the question that
remain is, are these populations physically
and functionally healthy? Alternatively, was
the adaptation to a low quality protein
intake "cost-less" or "costly"?

These questions could be answered by
correlating some criterion of health with
IAA intake. For instance, the physical
(anthropometric) characteristics and activity
(functional) patterns of an individual could
be used to diagnose a state of Chronic
Energy Deficiency (79). However, we do
not, as yet, have anthropometric, or
functional criterion, that can be used to
define a minimum but safe level of intake

of IAA's.

It is possible however, to evaluate the
protein quality in the diets eaten in
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developing regions. Protein nutritional
quality can be measured by an amino acid
score. This concept, first introduced by in
Block & Mitchell in 1946 (80), is now defined
as the concentration of the limiting amino
acid in the food protein as a proportion of
the concentration of the same amino acid
in a reference amino acid pattern (81). The
reference amino acid pattern (which should
be ideal) is now taken to be the pattern of
human amino acid requirements (82, 83),
and is shown, for the different patterns that
have been recommended, in Table III. The
next step is to identify the limiting (of the
least concentration in mg/g protein) amino
acid in various proteins, from different
sources, and to use these amino acids in
the consideration above. The identification
of the limiting amino acid is derived from
the ratio of the amount of the amino acid
in 1 gm of a dietary protein source to the
amount of the same amino acid in 1 gm of
an ideal standard protein, or, the reference
pattern of IAA requirement (84). The amino
acid score can be made more accurate by
the correction for digestibility of the protein
source. Thus, the digestibility of mixed
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vegetable protein diets by Indian children
may approximate 65-85% (85). This method
yields a new score, which is called the
Protein Digestibility Corrected Amino Acid
Score (PDCAAS, ref. 3). While the
digestibility factors may vary, this still gives
a more accurate scoring pattern for proteins
than earlier patterns. The IAA lysine has
been shown to be the most limiting in cereal
protein, and in general, is at a much lower
concentration in most plant foods (86, 87).
In addition, the lysine content of legumes
is high, and their sulphur containing
amino acids are limiting, while animal foods
have a high concentration of these amino
acids, and are limiting in tryptophan
(86, 87).

If an amino acid score ([amino acid
content in the food protein/amino acid
content in the reference amino acid
requirement pattern] x 100) is calculated
for wheat flour, it would be >100, when
the 1985 FAO/WHO/UNU amino acid
requirement pattern for the adult is used
as the reference pattern. This says that the
nutritional value of wheat would be equal

TABLE III : Amino Acid Scores for different Recommendations.

Score (mg / gm protein)

Amino acid FAO/WHO/UNU OAAL New "MIT" FAO/WHO
1985 (I) (2) Pattern (3) 1991 (4)

Isoleucine 13 35 38 28
Leucine 19 65 65 66
Lysine 16 50 50 58

Methionine+cystine 17 25 25 25

Phenylalanine+tyrosine 19 65 65 63

Threonine 9 25 25 34

Tryptophan 5 10 10 11

Valine 20 35 35 35

Total III 310 313 320

(1) From Ref. 2; (2) From Ref. 4, 86; (3) From Ref. 20; (4) From Ref. 3.
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TABLE IV : Amino acid scoring patterns for different food products.

Amino acid score* based on

P"otein source Lysine content FAO/WHO/ UNU FAD/WHO MIT
(mg/g protein) 1985 1991 Pattern

Wheat 27.2 >100 40 48

Rice 35.2 >100 60 70

Sorghum 24 >100 41 48

Millet 22.4 >100 38 44

Nuts/Seeds 34.5 ±12.3 >100 59 69

V gelables 43.2 ±14.7 >100 74 86

Legumes 72.7 ±6.04 >100 >100 >100

!I.llimal Protein 81.92 ±7.8 >100 >100 >100

, =Not corrected for digestibility
~. Lysine Scoring Pattern (mg/g protein)
FAO/WHO/UNU 1985 : 16; FAON,lHO :58; MIT Patter :58;
2. Lysine content from refs. 86,89.

to that of high quality animal protein foods,
such as milk, egg or meats, and there would
be no concern with the assessment of the
quality of plant protein in adults (86). On
the other hand, for scoring purposes, if the
1991 F AO/WHO/ pattern were used, a
relative nutritional quality of 40% would be
obtained. The MIT pattern would predict a
slightly higher value of 48% (Table IV, ref.
20), and if digestibility was taken to be 85%,
then the PDCAAS would be even lower. In
each case, lysine was determined to be the
most limiting amino acid (20). In either of
tt.ese circumstances, a diet containing
predominantly cereal as its protein source,
would be a cause of concern, for risk of
lysine inadequacy.

It is worth considering the impact of this
111 the context of an Indian diet, supplying
10% of the caloric intake as protein, which
could come largely from cereal sources. For
example, recent surveys (AV Kurpad,
unpublished data) on small groups of urban
and taral In~ians in and around Bangalore

show that a large proportion of the protein
intake comes from cereals, which is also
reflected in larger surveys (88). Assuming
a protein intake of 62 gm (c.v. =20%), a
cereal protein intake of 48 gm, a legume
(assuming that all non cereal plant protein
was legume) intake of 10 gm, and an animal
protein (milk/eggs/meat) of 4 gm per day,
the lysine intake per day would be about
2400 mg (assuming cereals to contain 30
mg· lysine/gm protein, legumes to contain
64 mg lysine/g protein, and animal protein
to contain 85 mg/gm protein; these lysine
values taken from ref. 86). For a 60 kg
individual, the lysine intake would be 40
mg/kg/day. Further, assuming that this
would be utilised to an extent of 70%, this
would amount to the physiological
equivalent of 28 mg/kg/day, which is just
about the estimated minimum requirement
for lysine.

This crude analysis also points out the
efficacy of legumes or animal protein, in
dramatically increasing the lysine content
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of the diet. For example, the ratio of cereal
to legume in the above diet, was about
80:20. In order to improve this diet, to
achieve a lysine intake of about 3000 mgt
kg/day (or, a lysine score of 100 for the
mixed dietary proteins), a change in the
cereal: legume ratio, from it's previous
value, to about 60:40, would suffice.
Therefore, a judicious mix of different plant
protein sources, would be adequate to meet
a desirable lysine intake, even when the
amount of animal protein was small elr
negligible.

Predictions about the desirable level of
population intakes of lysine can also be
made. If we now assume a reference weight
of 60 kg in the population, then the
minimum lysine requirement (based on the
new MIT recommendation, ref. 20), in this
population would be about 1800 mg/day.
With an observed coefficient of variation of
the above Bangalore diet of about (it may
be more) 20%, and an assumed normal
distribution of intake, we would obtain a
safe population intake value of this
distribution (assuming 1800 mg as falling
at two standard deviations below the mean)
of 3000 mg/day. This would be the target
mean population intake, to ensure that
there would be less than 5% of the
population at risk of consuming less than
their required intake of lysine. Once again,
the importance of mixing different plant
sources of protein is underscored by this
analysis.

4.3: Implications for protein quality and
vegetarianism:

The current dogma, as reflected by 1985
FAO/WHO/UNU recommendations (2), that
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"digestibility appears to be the most
important factor determining the capacity
of the protein in a usual mixed diet to
meet the protein needs of adults", is
now being challenged by the new MIT
recommendations (20) for IAA intake. It now
appears that protein quality is also an
important issue for adult dietary intakes.

Throughout history, humans have used
some 3000 plant species for food (86).
Livestock production diverts the available
energy and protein from plants into feed,
rather than into direct human consumption,
and it is a popular view to recommend the
reduction in the amount of legumes and
cereals to be used as animal feed (86). There
are also many potential benefits of
vegetarianism, and these benefits have been
the subject of reviews and symposia (89, 90).
There are many myths about plant proteins
in human nutrition, and these are listed in
reference 86. Some of these are that plant
proteins are of "poor" quality, and are
"incomplete". This is not true, as the
analysis in section 3.1 showed, and while
plant proteins in isolation may be variable
in quality, in combination, they are
"complete", and adequate to meet the
balance requirements of an individual.
Further, it is not necessary to have the
"right" combination of plant proteins at one
meal: the balance achieved over a day, is
more important (86).

Apropos the dogma that has been in
vogue, about the non-importance of protein
quality; this is completely dispelled
when accepting the new 1991 WHO/FAO
interim recommendations, or the MIT
recommendations for IAA intake. Clearly,
protein quality is important, this quality in
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the diet can be manipulated by food
combinations to achieve balance, and
excitingly, there are new possibilities of food
fortification, with amino acids, in order to
render a better quality protein in, for
example, cereals.

5. Summary

In summary, the current yet limited
evidence, suggests that it is unlikely that
there would be any major differences in the
minimal physiological requirements for
lysine among groups of normal healthy
adults of different genetic, nutritional and
environmental backgrounds. It is hoped that
there will be a broader appreciation of this
fact by national and multi-national
authorities concerned with improving the
nutritional well-being of underprivileged
populations world-wide.

Based therefore, on the discussed
paradigms, it is our view that the new,
tentative "MIT" derived requirements for
indispensable amino acids, as summarised
earlier in Table II, represent the best
available approximations of the needs for
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these nutrients in adults. Hence, we
recommend that they be used as a rational
basis for the formulation of food policies
world wide. In addition, these
recommendations can be used in the
formulation of amino acid mixtures, or of
protein sources, intended for meeting the
nutritional support of individuals in a
clinical setting.

The new recommendations are for the
minimum amounts of IAA required, and
from the beginning of this century, there
has been a concern that the requirements
of nutrients be set at the most desirable
level. As Atwater wrote: "A man may live
and maintain body equilibrium on either a
higher or lower nitrogen level. One essential
question is: what level is the most
advantageous? The answer to this question
must be sought ... in broader questions
regarding bodily and mental efficiency,
general health, strength and welfare" (91,
quoted in ref. 14). The challenge of the
future is to identify these functional indices
of optimal health, which will guide future
recommendations for IAA requirements in
human.
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